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SEPARATION SCIENCE AND TECHNOLOGY, 15(3), pp. 371-396, 1980 

HYDROGEN ISOTOPE SEPARATION BY CATALYZED EXCHANGE 
BETWEEN HYDROGEN AND L I Q U I D  WATER 

J. P. Bu t l e r  
Atomic Energy of Canada Limited 

Research Company 
Chalk River Nuclear Labora tor ies  
Chalk River,  Ontar io ,  Canada KOJ 1 J O  

ABSTRACT 

The d iscovery ,  a t  Chalk River Nuclear Labora tor ies ,  of a simple 
method of wetproofing platinum c a t a l y s t s  so  t h a t  they r e t a i n  t h e i r  
a c t i v i t y  i n  l i q u i d  water s t imula ted  a concentrated r e sea rch  program 
f o r  t h e  development of c a t a l y s t s  f o r  t h e  hydrogen-water i s o t o p i c  
exchange r eac t ion .  This  paper reviews 1 0  y e a r s  of study which have 
r e s u l t e d  in t h e  development of h ighly  a c t i v e  platinum c a t a l y s t s  
which remain e f f e c t i v e  i n  water f o r  per iods  g r e a t e r  than a year .  

The most e f f i c i e n t  way t o  use  t h e s e  c a t a l y s t s  f o r  t h e  sepa ra t ion  
of hydrogen i so topes  is  i n  a t r i c k l e  bed r e a c t o r  which e f f e c t s  a 
continuous sepa ra t ion .  The c a t a l y s t  is  packed i n  a column wi th  
hydrogen and water flowing coun te rcu r ren t ly  through t h e  bed. The 
o v e r a l l  i so tope  t r a n s f e r  r a t e  measured f o r  t h e  exchange r e a c t i o n  
i s  inf luenced  by va r ious  parameters,  such a s  hydrogen and water 
flow r a t e s ,  temperature,  hydrogen pressure ,  and platinum meta l  
loading .  The e f f e c t  of  t hese  parameters a s  we l l  a s  t h e  improved 
performance obtained by d i l u t i n g  t h e  hydrophobic c a t a l y s t  wi th  i n e r t  
hydroph i l i c  packing are d iscussed .  

The hydrophobic c a t a l y s t s  can be e f f e c t i v e l y  used i n  a v a r i e t y  
of a p p l i c a t i o n s  of p a r t i c u l a r  i n t e r e s t  i n  t he  nuc lea r  i ndus t ry .  A 
- Combined E l e c t r o l y s i s  C a t a l y t i c  Exchange - Heavy Water P rocess  
(CECE-HWP) i s  being developed at  Chalk River wi th  t h e  u l t ima te  aim 
of producing p a r a s i t i c  heavy water from e l e c t r o l y t i c  hydrogen 
streams. Other more immediate a p p l i c a t i o n s  inc lude  t h e  f i n a l  
enrichment of heavy water and the  e x t r a c t i o n  of t r i t i u m  from l i g h t  
and heavy water .  P i l o t  p l an t  s t u d i e s  on these  l a t t e r  processes  a r e  
c u r r e n t l y  i n  progress .  
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INTRODUCTION 

BUTLER 

The s e p a r a t i o n  of  t h e  i s o t o p e s  of hydrogen--deuterium from 

prot ium, t r i t i u m  from pro t ium,  and t r i t i u m  from deuterium-- is  of  

g r e a t  importance t o  t h e  n u c l e a r  i n d u s t r y .  Research i n  t h i s  f i e l d  

h a s  been p r i m a r i l y  concerned w i t h  deuter ium-prot ium s e p a r a t i o n  

because o f  t h e  l a r g e  q u a n t i t i e s  of heavy water r e q u i r e d  f o r  n u c l e a r  

power r e a c t o r s  f u e l e d  w i t h  n a t u r a l  uranium and moderated w i t h  heavy 

water. T h i s  h a s  been t h e  s i t u a t i o n  i n  Canada; t h e  x a d a  Deuter ium 

- Uranium (CANDU) r e a c t o r  r e q u i r e s  0.85 Plg of D 2 0  p e r  e l e c t r i c a l  W of 

i n s t a l l e d  c a p a c i t y .  Although almost  a l l  heavy water p r o d u c t i o n  

today i s  based on t h e  chemical  exchange r e a c t i o n  between water 

and hydrogen s u l f i d e ,  t h e  G i r d l e r - S u l f i d e  o r  GS p r o c e s s ,  t h e r e  are 

a number of  o t h e r  methods of  producing heavy water as reviewed 

r e c e n t l y  by Rae (I). I n  Canada, w e  have had a c o n t i n u i n g  program 

t o  develop a l t e r n a t i v e  and h o p e f u l l y  b e t t e r  methods f o r  deuter ium 

s e p a r a t i o n .  

A s  t h e  n u c l e a r  i n d u s t r y  h a s  developed,  however, t r i t i u m  

s e p a r a t i o n  has  a l s o  become v e r y  impor tan t .  T r i t i u m  i s  formed by 

neut ron  c a p t u r e  i n  deuter ium and by t h e  f i s s i o n  of uranium. I n  

heavy water r e a c t o r s  t h e  c o n c e n t r a t i o n  of  t r i t i u m  i n  t h e  D 0 

g r a d u a l l y  i n c r e a s e s  and e v e n t u a l l y  t h e  t r i t i u m  must b e  removed t o  

reduce  t h e  man-rem exposure a t  n u c l e a r  power s t a t i o n s .  The aqueous 

wastes from f u e l  r e p r o c e s s i n g  p l a n t s  and a l l  w a t e r  cooled  r e a c t o r s  

a l s o  c o n t a i n  a p p r e c i a b l e  q u a n t i t i e s  of t r i t i u m  as HTO. The recovery  

of  t r i t i u m  from t h e s e  s o u r c e s  w i l l  become n e c e s s a r y  t o  minimize 

t r i t i u m  r e l e a s e  t o  t h e  environment ,  so t r i t i u m  s e p a r a t i o n  p l a n t s  

w i l l  become i n c r e a s i n g l y  common. Fusion r e a c t o r s ,  of c o u r s e ,  w i l l  

r e q u i r e  t r i t i u m  s e p a r a t i o n  on a l a r g e r  scale.  

2 

The advantages  of  s e p a r a t i n g  t h e  i s o t o p e s  of hydrogen by a 

p r o c e s s  based on t h e  i s o t o p i c  exchange between hydrogen and w a t e r  

have been recognized  f o r  many y e a r s  ( 2 ) .  However, f o r  a n  i s o t o p e  

s e p a r a t i o n  p r o c e s s  t o  be  e f f i c i e n t ,  a m u l t i s t a g e  c o u n t e r c u r r e n t  

cascade  i s  r e q u i r e d ,  and t h i s  n e c e s s i t a t e s  t h e  w a t e r  be ing  p r e s e n t  as 
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HYDROGEN ISOTOPE SEPARATION 373 

l i q u i d .  

between hydrogen and water vapour ,  t h e y  are c h a r a c t e r i z e d  by 

ex t remely  low exchange rates i n  t h e  presence  of  l i q u i d  water. 

S tevens '  ( 3 )  concept  of a wetproofed noble  metal c a t a l y s t ,  and 

o u r  subsequent  development ( 4 )  a t  Chalk River  Nuclear L a b o r a t o r i e s  

(CRNL) of  a very  e f f i c i e n t  hydrophobic p la t inum c a t a l y s t  t h a t  

r e t a i n s  its a c t i v i t y  i n  l i q u i d  water, h a s  made t h e  hydrogen-water 

exchange process  a r e a l i t y .  Over t h e  p a s t  t e n  y e a r s ,  w e  have 

developed e f f i c i e n t  and s t a b l e  c a t a l y s t s  and have devised  p r o c e s s e s  

f o r  s p e c i f i c  a p p l i c a t i o n s  i n v o l v i n g  t h e  s e p a r a t i o n  of t h e  v a r i o u s  

i s o t o p e s  of hydrogen. 

Although e f f e c t i v e  c a t a l y s t s  have been known f o r  exchange 

H I S  TORY 

Hydrogen-water exchange h a s  long  seemed an a t t r a c t i v e  p r o c e s s  

f o r  t h e  product ion  of heavy water. The exchange r e a c t i o n  w a s  

e x t e n s i v e l y  i n v e s t i g a t e d  d u r i n g  t h e  days of t h e  Manhattan P r o j e c t  

(5) and w a s  t h e  b a s i s  of Canada 's  f i r s t  i n d u s t r i a l  heavy water 

p l a n t  ( 6 )  t h a t  opera ted  a t  T r a i l ,  B.C. ,  from 1943 u n t i l  1956. 

The p r o c e s s  used deuter ium exchange between water and an enr iched  

hydrogen stream provided by e l e c t r o l y s i s .  Deuterium w a s  t r a n s f e r r e d  

from hydrogen t o  water vapour by a c a t a l y s t  a t  about  70'C and from 

water vapour t o  l i q u i d  water i n  bubble  cap t r a y s .  The two s t e p s  

w e r e  p h y s i c a l l y  separa ted  i n  t h e  column because t h e  c a t a l y s t  w a s  

d e a c t i v a t e d  by l i q u i d  water.  Because of t h e  complexi ty  and s i z e  of  

t h e  exchange towers ,  t h e  p r o c e s s  proved t o  b e  uneconomic, a l though 

a somewhat s imi l a r  p l a n t  i s  s t i l l  o p e r a t i n g  i n  Norway ( 6 ) .  

Later ,  Becker and co-workers ( 7 )  developed a s l u r r y  c a t a l y s t  

of p la t inum on f i n e l y  d i v i d e d  c h a r c o a l .  This  c a t a l y s t  w a s  e f f e c t i v e  

i n  water a t  very  h i g h  p r e s s u r e s  (about  20 MPa) where t h e  

c o n c e n t r a t i o n  of  d i s s o l v e d  hydrogen i s  a p p r e c i a b l e .  However, t h e  

p r o c e s s  a l s o  proved uneconomical because of t h e  h i g h  p la t inum 

inventory  and unacceptab le  l o s s e s  of t h e  f i n e l y  d iv ided  c a t a l y s t .  
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374 BUTLER 

The development of  hydrophobic c a t a l y s t s  a t  CRNL e l i m i n a t e s  

many of  t h e  d i s a d v a n t a g e s  of  t h e s e  p r o c e s s e s .  By a l l o w i n g  c a t a l y s i s  

t o  t a k e  p l a c e  i n  t h e  p r e s e n c e  o f  l i q u i d  water, t h e  exchange columns 

become s imple  and are  reduced i n  s i z e  about  20 f o l d  from t h o s e  

r e q u i r e d  a t  T r a i l .  More r e c e n t l y ,  t h e  Japanese  have begun an 

i n t e n s i v e  program t o  develop t h e i r  own hydrophobic c a t a l y s t s  ( 8 , 9 ) .  

MATERIALS AND METHODS 

The S e p a r a t i o n  Reac t ion  

The o v e r a l l  hydrogen-water i s o t o p i c  exchange r e a c t i o n  i n v o l v e s  

t h e  t r a n s f e r  of  an i s o t o p e  of hydrogen from hydrogen g a s  t o  l i q u i d  

witer, and,  f o r  t h e  deuter ium-prot ium s e p a r a t i o n ,  i s  w r i t t e n  as:  
-+ 

HD + H201iq + HDOliq + H2.  (1) 

The s e p a r a t i o n  f a c t o r ,  a ,  f o r  t h i s  exchange r e a c t i o n  i s  d e f i n e d  i n  

terms o f  t h e  deuter ium t o  pro t ium atom r a t i o s  i n  t h e  two phases  a t  

e q u i l i b r i u m :  

a = @/HIliq @/HIgas.  1 
A t  low deuter ium c o n c e n t r a t i o n s ,  a i s  e q u a l  t o  t h e  e q u i l i b r i u m  

c o n s t a n t  f o r  t h e  exchange r e a c t i o n .  S e p a r a t i o n  f a c t o r s  f o r  t h e  

v a r i o u s  i s o t o p e s  of  hydrogen are  g i v e n  i n  Table  1 f o r  t h r e e  

tempera tures .  The v a l u e s  f o r  deuter ium-prot ium w e r e  t a k e n  from our  

own d i r e c t  measurements ( l o ) ,  and t h o s e  fo r  t h e  o t h e r  s e p a r a t i o n s  

TABLE 1 

Hydrogen-Liquid Water S e p a r a t i o n  F a c t o r s  

Temperature D from H T from H T from D 
( "C )  

25 3.806 7.00 1.658 

45 3.389 5 .91  1.584 

60 3.140 5.29 1.538 
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HYDROGEN ISOTOPE SEPARATION 375 

were e v a l u a t e d  from t h e  t h e o r e t i c a l  d a t a  of Bron, e t  a l .  (11) .  

The h i g h  deuterium-protium s e p a r a t i o n  f a c t o r ,  about  t w i c e  t h e  v a l u e  

of t h a t  f o r  t h e  H2S-H20 exchange used i n  t h e  GS p r o c e s s ,  makes t h e  

H2-H20 exchange i n h e r e n t l y  a t t rac t ive  f o r  heavy water product ion .  

Higher r e c o v e r i e s  from smaller p l a n t s  are t h e o r e t i c a l l y  p o s s i b l e .  

From t h e  ea r l i e s t  s t a g e s  i n  t h e  program, w e  recognized t h a t  

t h e  o v e r a l l  t r a n s f e r  of deuter ium between streams of hydrogen and 

l i q u i d  water over  wetproofed c a t a l y s t s  t a k e s  p l a c e  i n  two 

c o n s e c u t i v e  t r a n s f e r  s t e p s .  The f i r s t  r e a c t i o n  involves  t h e  

c a t a l y t i c  t r a n s f e r  of deuter ium from t h e  enr iched  hydrogen stream 

t o  water vapour ,  and t h e  second cor responds  t o  t h e  t r a n s f e r  from 

water vapour t o  l i q u i d  as  shown i n  Eqs. (2)  and ( 3 ) :  

(vap) + H2' H D + H O  2 HDO 

HDO + H O  -+ HDO f H O  

2 

(vap) 2 ( l i q )  + ( l i q )  2 ( v a p ) '  

The c a t a l y t i c  r e a c t i o n  ( 2 )  o c c u r s  on a c t i v e  c a t a l y s t  s i tes w h i l e  t h e  

vapour- l iquid t r a n s f e r  r e a c t i o n  (3) occurs  on any s u r f a c e .  This  

l a t t e r  t r a n s f e r  s t e p  i s  r e a l l y  a condensat ion-evaporat ion r e a c t i o n .  

Because t h e s e  r e a c t i o n s  occur  c o n s e c u t i v e l y ,  h i g h  o v e r a l l  t r a n s f e r  

rates f o r  deuter ium can  o n l y  b e  achieved by maximizing t h e  rates 

of b o t h  t r a n s f e r  r e a c t i o n s .  The i n d i v i d u a l  t r a n s f e r  r a t e s  have been 

measured s imul taneous ly  i n  a t r i c k l e  bed r e a c t o r  ( 1 2 ) ,  b u t  f o r  

s i m p l i c i t y  only  t h e  o v e r a l l  rate is d i s c u s s e d  i n  t h i s  paper .  

The C a t a l y s t  

S tevens '  (3)  ingenious  i d e a  of  wetproofing a noble  metal  

c a t a l y s t ,  e n a b l i n g  i t  t o  remain a c t i v e  i n  l i q u i d  water, w a s  a r ea l  

breakthrough f o r  p r o c e s s e s  based on t h e  hydrogen-water exchange 

r e a c t i o n .  For t h e  f i r s t  t i m e ,  b o t h  t r a n s f e r  s t e p s  could proceed 

r a p i d l y  i n  t h e  same volume i n  a packed column. This  f i r s t  c a t a l y s t  

w a s  n o t  v e r y  a c t i v e ,  and i t s  a c t i v i t y  decayed i n  water i n  a m a t t e r  

of days ,  bu t  i t  presented  c h a l l e n g i n g  p o s s i b i l i t i e s .  A program w a s  

i n i t i a t e d  i n  l a t e  1969 at  CRNL f o r  t h e  development of more s t a b l e  

and a c t i v e  c a t a l y s t s  as  w e l l  as a f u l l  i n v e s t i g a t i o n  of t h e  

hydrogen-water exchange r e a c t i o n .  
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376 BUTLER 

The f i r s t  c a t a l y s t s  were prepared  from commercial vapour- 

phase c a t a l y s t s ,  p l a t i n u m  on y-alumina, by a p p l y i n g  a t h i n  c o a t  

o f  s i l i c o n e  t o  p r e v e n t  w e t t i n g  of  t h e  p l a t i n u m  c r y s t a l l i t e s  ( 2 ) .  

Subsequent ly ,  c a t a l y s t s  were made by d e p o s i t i n g  p la t inum on porous 

p o l y t e t r a f l u o r o e t h y l e n e  (13) i n  an a t t e m p t  t o  provide  an improved 

hydrophobic environment f o r  t h e  p la t inum.  A more s u c c e s s f u l  approach 

h a s  been t o  d e p o s i t  p l a t i n u m  on h i g h  s u r f a c e  area carbon and t o  

bond t h e  p l a t i n i z e d  carbon t o  a v a r i e t y  of  column packings  o r  

c a r r i e r s  u s i n g  T e f l o n  as  t h e  bonding and wetproof ing  a g e n t  ( 4 ) .  
These l a t t e r  c a t a l y s t s  have proven t o  be  v e r y  s t a b l e  and e f f e c t i v e  

f o r  t h e  hydrogen-water exchange r e a c t i o n .  

To i l l u s t r a t e  t h e  wetproof ing  a c t i o n  o f t h e T e f l o n ,  F ig .  1 shows 

photographs o f  Pt-C-Teflon c a t a l y s t  on 6.1-mm rough ceramic s p h e r e s ,  

immersed i n  water and i n  a l c o h o l .  The sample i n  water shows a 

s i l v e r y  sheen on t h e  s u r f a c e  of  t h e  s p h e r e s  r e s u l t i n g  from a i r  

t rapped  between t h e  s u r f a c e  of t h e  c a t a l y s t  and t h e  water.  T h i s  

FIGURE 1. Hydrophobic Pt-C-Teflon c a t a l y s t s  i n  water ( l e f t )  and 
a l c o h o l  ( r i g h t ) .  
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HYDROGEN ISOTOPE SEPARATION 377 

s imple  i l l u s t r a t i o n  shows t h a t  t h e  hydrophobic Tef lon  l a y e r  p r e v e n t s  

t h e  w e t t i n g  of t h e  c a t a l y s t  s u r f a c e  i n  w a t e r .  I n  c o n t r a s t ,  t h e  sample 

i n  a l c o h o l  appears  j e t  b l a c k ,  and no a i r  s a c k  i s  observed because 

t h e  lower s u r f a c e  t e n s i o n  of t h e  a l c o h o l  a l l o w s  complete w e t t i n g  

of t h e  c a t a l y s t .  

C a t a l y s t  A c t i v i t y  

The a c t i v i t y  of t h e s e  wetproofed c a t a l y s t s  f o r  hydrogen-water 

i s o t o p i c  exchange i s  measured i n  a s i n g l e  p a s s ,  t r i c k l e  bed 

r e a c t o r  d e s c r i b e d  i n  p r e v i o u s  p u b l i c a t i o n s  ( 1 2 ,  1 4 ) .  Water i s  

passed downward through t h e  packed c a t a l y s t  bed and hydrogen g a s ,  

s a t u r a t e d  w i t h  water vapour ,  f lows c o u n t e r c u r r e n t l y  upward. From 

t h e  known deuter ium ( o r  t r i t i u m )  c o n c e n t r a t i o n s  of t h e  water e n t e r i n g  

t h e  t o p  of t h e  column, and t h e  c o n c e n t r a t i o n  i n  t h e  i n l e t  and o u t l e t  

hydrogen g a s ,  t h e  a c t i v i t y  of t h e  c a t a l y s t  can be measured. 

The a c t i v i t y  i s  expressed  as t h e  o v e r a l l  gas-phase volume t r a n s f e r  

ra te ,  K a ,  given i n  t h e  u n i t s  m (H2 a t  S T P ) * S - ' . ~ - ~  ( c a t a l y s t  b e d ) ,  

and i s  e v a l u a t e d  from t h e  e q u a t i o n :  

3 
Y 

n 

K a = f - NTU, 
Y ( 4 )  

where 
-1 F = s u p e r f i c i a l  hydrogen f low ra te ,  m ' s  a t  STP; 

h = h e i g h t  of c a t a l y s t  bed,  m; 

NTU = number of  t r a n s f e r  u n i t s  i n  t h e  bed. 

The number of t r a n s f e r  u n i t s  (15) i s  r e l a t e d  t o  t h e  change 

i n  t h e  deuter ium c o n c e n t r a t i o n  i n  t h e  hydrogen over  t h e  l e n g t h  

of  t h e  column, and f o r  low deuter ium c o n c e n t r a t i o n s  i s  c a l c u l a t e d  

from t h e  e q u a t i o n  - -.I 

(Yb - Yb*) - (Yt - Yt") * In  i Y b  , Y t  - - yb*! Y t * ;  ' (5) 
yb - 't NTU = 

_. _, 

where 

y = t h e  atom f r a c t i o n  of deuter ium i n  t h e  hydrogen gas .  

The s u b s c r i p t s  t and b r e f e r  t o  t h e  t o p  and bottom of t h e  exchange 

column, and t h e  s u p e r s c r i p t  (*) denotes  t h e  deuter ium c o n c e n t r a t i o n  

i n  t h e  hydrogen i n  e q u i l i b r i u m  w i t h  t h e  water. The v a l u e  of y* 

i s  c a l c u l a t e d  from t h e  exac t  r e l a t i o n  
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378 BUTLER 

( 6 )  y *  = x 
a - x(a- 1) ’ 

where 

x = t h e  atom f r a c t i o n  of deuter ium i n  t h e  water.  

The r e l a t i o n s h i p  f o r  t h e  NTU i s  a n  approximat ion ,  i n  t h a t  i t  assumes 

a m a s s  ba lance  between t h e  l i q u i d  and hydrogen streams, and n e g l e c t s  

t h e  f low of water vapour  i n  t h e  g a s  stream. However, a t  low 

h u m i d i t i e s  t h e  e r r o r  is  s m a l l ,  and f o r  s h o r t  l a b o r a t o r y  columns 

(about  0.3 m) o p e r a t i n g  a t  25°C t h e  e r r o r  i s  <1%. 

RESULTS AND DISCUSSION 

C a t a l y s t  A c t i v i t y  

The performance of  o u r  c a t a l y s t s  h a s  g r e a t l y  improved o v e r  t h e  

y e a r s  and Table  2 summarizes some achievements .  The a c t i v i t y ,  K a ,  
Y 

TABLE 2 

Improvement i n  C a t a l y s t  Performance 

C a t a l y s t  R e l .  S p e c i f i c  
A c t i v i t y  

1. Pt-Charcoal ,  
Taylor  

0.017 

2.  0.5% Pt-A1203 0.005 
Unt rea ted  

3. 0.5% Pt-A1203 0.22 
S i l i c o n e  t r e a t e d  

4 .  0.4% Pt-Porous 0.20 
Tef lon  

5 .  0.4% Pt-C-Teflon 0.58 

6. 0.1% Pt-C-Teflon 1 .05  

7 .  0.39% Pt-C-Teflon 2.40 
Ordered bed 

2 .0  

1.0 

4 2  

58 

133 

1920 

2580 
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HYDROGEN ISOTOPE SEPARATION 379 

f o r  each c a t a l y s t  i s  g iven  f o r  s t a n d a r d  column o p e r a t i n g  c o n d i t i o n s  of  

25"C, 1 a t m  p r e s s u r e ,  and a s u p e r f i c i a l  hydrogen f low ra te  of 

1 .0  m's at STP. The s i l i c o n e  t r e a t e d  c a t a l y s t  N o .  3 r e p r e s e n t s  

S tevens '  o r i g i n a l  d i scovery .  Although t h e  a c t i v i t y  i s  42 t i m e s  t h a t  

o f  t h e  u n t r e a t e d  c a t a l y s t ,  i t  w a s  s t i l l  q u i t e  low. P la t inum on 

porous Tef lon  r e s u l t e d  i n  a more s t a b l e  c a t a l y s t  b u t  showed no 

improvement i n  a c t i v i t y .  Depos i t ing  p la t inum on h i g h  s u r f a c e  area 

carbon and bonding t h i s  t o  a c a r r i e r  w i t h  Tef lon  ( c a t a l y s t  No. 5) 

r e s u l t e d  i n  about  a t h r e e f o l d  improvement i n  a c t i v i t y .  3y mixing 

t h e  c a t a l y s t  w i t h  h y d r o p h i l i c  packing (d iscussed  i n  d e t a i l  l a t e r )  

and i n c r e a s i n g  t h e  p la t inum d i s p e r s i o n  ( c a t a l y s t  No. 6 ) ,  t h e  

a c t i v i t y  w a s  i n c r e a s e d  by a f u r t h e r  f a c t o r  of  2 .  

u s i n g  o n l y  114 t h e  p la t inum c o n c e n t r a t i o n ,  and t h e  improvement p e r  

u n i t  of p la t inum i s  1900 r e l a t i v e  t o  t h e  u n t r e a t e d  0.5% Pt-A1203. 

F i n a l l y ,  more a c t i v e  c a t a l y s t s  are prepared  by packing a hydro- 

phobic c a t a l y s t  and h y d r o p h i l i c  mater ia l  i n  a column i n  a s p e c i f i c  

ordered  bed arrangement .  The r e s u l t i n g  c a t a l y s t  No. 7 has  a s p e c i f i c  

a c t i v i t y  about  2600 t i m e s  t h a t  of t h e  u n t r e a t e d  c a t a l y s t  and 1300 

t i m e s  g r e a t e r  than  t h e  c a t a l y s t  p a t e n t e d  by Taylor  (16) f o r  t h i s  

exchange r e a c t i o n  i n  1954.  Although f u r t h e r  improvements i n  c a t a l y s t  

a c t i v i t y  are a n t i c i p a t e d ,  a c a t a l y s t  w i t h  a K a about  0.5 is 

s u f f i c i e n t l y  a c t i v e  f o r  many of t h e  s m a l l  s c a l e  a p p l i c a t i o n s  c u r r e n t l y  

b e i n g  cons idered  f o r  t h e  hydrogen-water exchange r e a c t i o n .  

Mixed C a t a l y s t  Beds 

-1 

T h i s  w a s  achieved 

Y 

With v e r y  hydrophobic c a t a l y s t s ,  water f low through t h e  column 

became a problem. To improve water d i s t r i b u t i o n  i n  t h e  bed ,  t h e  

c a t a l y s t  w a s  mixed w i t h  h y d r o p h i l i c  packing,  and t h e  e f f e c t  on t h e  

a c t i v i t y  i s  shown i n  F ig .  2 .  C a t a l y s t  columns c o n t a i n i n g  50% 

c a t a l y s t  and 50% h y d r o p h i l i c  packing  had about  t h e  s a m e  a c t i v i t y  as  

columns c o n t a i n i n g  100% c a t a l y s t .  The mixed beds n o t  o n l y  had 

b e t t e r  water d i s t r i b u t i o n  b u t  a l s o  produced t h e  same a c t i v i t y  w i t h  

o n l y  h a l f  t h e  amount of  c a t a l y s t  as  t h e  100% beds ( 1 7 ) .  The u s e  

of a mixed c a t a l y s t  bed r e p r e s e n t s  a c o n s i d e r a b l e  c o s t  s a v i n g  i n  

any commercial a p p l i c a t i o n .  
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380 BUTLER 

ACTIV ITY OF CATALYSTS MIXED WITH 
HY D R O  PH I L I C PACK I NG 

I I 1 I 

/ /  / / C A T A L Y S T  BED 

H E I G H T  - 1 9  cm 
4 AREA - ‘+.8cm2 

TEMPERATURE - 2 9 8 . 2 K  CT 

LT 
w 
LL 

P R E S S U R E  - 1 0 0 k P a  

H20 FLOW - 2 . 3  kg.m-”S-’  
H2 FLOW - 0.61 m/s a t  S T P  

(66 g/min) 

0 0 .32%Pt  

0 0.19%Ft 

I I I 
0 2 0  Y O  6 0  8 0  1 0 0  

x C A T A L Y S T  B Y  V O L U M E  

FIGURE 2. The a c t i v i t y ,  K y a ,  of Pt-C-Teflon c a t a l y s t s  on 6.1-mm 
ceramic spheres  as a func t ion  of d i l u t i o n  wi th  hydroph i l i c  
ceramic sphe res  of t h e  same s i z e .  
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HYDROGEN ISOTOPE SEPARATION 38 1 

The e x p l a n a t i o n  f o r  t h i s  e f f e c t  i s  obvious on c o n s i d e r i n g  t h e  

two r e a c t i o n  s t e p s  involved i n  t h e  o v e r a l l  t r a n s f e r  of  deuter ium; 

t h e  c a t a l y t i c  t r a n s f e r  of deuter ium from hydrogen t o  water vapour ,  

and t h e  vapour- l iqu id  t r a n s f e r  from water vapour t o  l i q u i d  water. 

The la t ter  rate is  i n c r e a s e d  by t h e  a d d i t i o n  of h y d r o p h i l i c  packing, 

which i n c r e a s e s  t h e  l i q u i d  s u r f a c e  area, and f o r  a c t i v e  c a t a l y s t s  

t h e  vapour- l iqu id  t r a n s f e r  w a s  l i m i t i n g  t h e  o v e r a l l  exchange. 

An e x t e n s i o n  of t h i s  p r i n c i p a l  h a s  l e d  t o  t h e  s u p e r i o r  performance 

o f  t h e  ordered  c a t a l y s t  beds (17) .  

Column Opera t ion  Parameters  

Some twenty d i f f e r e n t  parameters  a f f e c t i n g  c a t a l y s t  a c t i v i t y  

have been i n v e s t i g a t e d ,  bu t  t h i s  paper  w i l l  b e  l i m i t e d  t o  

parameters  a f f e c t i n g  column o p e r a t i o n .  All s t u d i e s  have been done 

u s i n g  mixed beds  c o n t a i n i n g  50% by volume c a t a l y s t  and 50% 

h y d r o p h i l i c  packing.  

The e f f e c t  o f  tempera ture  and hydrogen f low rate are shown i n  

F ig .  3 f o r  a 0.37% Pt-C-Teflon c a t a l y s t  on 6 . 1  nun ceramic s p h e r e s .  

For t h i s  t y p e  of c a t a l y s t ,  K a i n c r e a s e s  approximately as t h e  0 . 3  

power of t h e  hydrogen f low ra te  i n  t h e  range  0.05 t o  1.4  m . s  

The i s o t o p i c  exchange r e a c t i o n  h e r e  is  v e r y  f a s t ;  f o r  example, a t  

25'C and a hydrogen f low ra te  of 1 . 0  m's (STP), K a = 1 . 2 ,  and 

t h i s  i s  e q u i v a l e n t  t o  an  e q u i l i b r a t i o n  h a l f - t i m e  of 0.18 sec. 

The ha l f - t ime i s  c a l c u l a t e d  u s i n g  t h e  a c t u a l  hydrogen f low rate which 

i s  3.1 times t h e  s u p e r f i c i a l  f low ra te  f o r  t h i s  p a r t i c u l a r  c a t a l y s t  

bed assembly ( t h e  volume f r a c t i o n  of gas  i n  t h e  o p e r a t i n g  column 

i s  0.32). The s o l i d  p o i n t s  i n  F i g .  3 were obta ined  u s i n g  enr iched  

hydrogen (D/H = 250 ppm), where t h e  deuter ium i s  t r a n s f e r r e d  from 

t h e  hydrogen g a s  t o  t h e  l i q u i d  water ;  t h e  open p o i n t s  were o b t a i n e d  

u s i n g  e n r i c h e d  water (D/H = 1130 ppm), where deuter ium i s  

t r a n s f e r r e d  from t h e  l i q u i d  water t o  t h e  hydrogen g a s .  From t h e  

d a t a ,  no d i f f e r e n c e  can b e  d e t e c t e d  i n  t h e  ra te  of deuter ium t r a n s f e r  

f o r  t h e  n e t  r e a c t i o n  o c c u r r i n g  i n  e i t h e r  d i r e c t i o n .  The e f f e c t  

o f  tempera ture  on t h e  a c t i v i t y  of t h e  c a t a l y s t  i s  a l s o  i l l u s t r a t e d  

i n  F ig .  3 .  

-1 Y . 
-1 

Y 

For an i n c r e a s e  i n  tempera ture  from 25 t o  6OoC, K a 
Y 
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00 E N R I C H E D  H,O - O/H = 1130ppm 

BUTLER 

EFFECT OF HYDROGEN FLOW RATE AND 
TEMPERATURE ON CATALYST ACTIVITY 

I I I I I I I 
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5.0 
0 

- E 
y1 - 
II c v)  

0 
v 

E 
3.1 
r 

1.0 
w 
t- 
U 
CL 

CL 

0.5 
wl  
z 
4 
CL + 
w 
I 
=I 
-I 
0 w 

0.1 
0.1 

increases by a factor of 2 . 4 .  

the temperature coefficient of K a in the range 15 to 60°C is 
equivalent to an Arrhenius activation energy of 26 2 4 kJ'mol 

or 6.2 2 1.0 kcal-mol-l. 

From more extensive measurements, 

-1 Y 

The activity of the catalyst changes only slightly with liquid 

flow, and Fig. 4 shows the variation in activity of a 0.25% Pt-C- 
Teflon catalyst over a large range of liquid flow rates and a constant 

hydrogen flow of 0.56 m.s-l(STP). K a increases as the 0.08 power 
Y 

I I I I l l l l j  I I I I l l l l /  I I 1  
- - 
- - 
- - 
- CATALYST BED - 
- - H E I G H T  - 2 5 c m  
- AREA - 9.8 cmz - 

TEMPERATURE - 298.26 
- PRESSURE - 1 1 7  kPa - 

H 2  FLOW - 0.56m/s a t  STP 

- - 
- 

- - - - 
- A - - - 
- - 
- - 

- - 

, I I I I 1 1 1 1  I I I I I I I I I  I I I  

1.0 10 5 0  

EFFECT OF WATER FLOW RATE ON THE ACTIVITY 
OF A P t  - C -  TEFLON CATALYST 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



384 BUTLER 

of t h e  l i q u i d  f low ra te .  T h i s  minor dependence on l i q u i d  f low 

r e s u l t s  from i n c r e a s e d  t u r b u l e n c e  i n  t h e  bed a t  h i g h e r  flows 

and i s  t y p i c a l  of m a s s  t r a n s f e r  r e a c t i o n s  i n  packed columns. 

The e f f e c t  o f  system p r e s s u r e  on c a t a l y s t  a c t i v i t y  was f i r s t  

r e p o r t e d  by E n r i g h t  and Chuang (18), and some of  t h e i r  r e s u l t s  a t  

d i f f e r e n t  tempera tures  are summarized i n  F i g .  5. The a c t i v i t y  of  

t h e  c a t a l y s t  d e c r e a s e s  w i t h  i n c r e a s i n g  p r e s s u r e ,  and i t s  power 

dependence on p r e s s u r e  v a r i e d  i n  the r a n g e  -0.3 t o  -0.6. The 

EFFECT OF PRESSURE AND TEMPERATURE 
ON CATALYST ACTIVITY 

1 0 s  

5.c 
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C A T A L Y S T  B E 0  
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H20 FLOW - 2.04 kg . r n - * . s - ’  
(3.8 kg/rnin 1 

0.5 1.0 

P R E S S U R E  - M P a  

5.0 10.0 

FIGURE 5. E f f e c t  of system p r e s s u r e  and tempera ture  on t h e  
c a t a l y s t  a c t i v i t y ,  K a. 
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HYDROGEN ISOTOPE SEPARATION 385 

h igher  power dependence i s  observed a t  t h e  h igher  tempera tures ,  

where the  c a t a l y s t  a c t i v i t y  i s  g r e a t e r .  More ex tens ive  l a b o r a t o r y  

s t u d i e s  on t h e  e f f e c t  of p r e s s u r e  i n  t h e  range 0.1 t o  1 .7  MPa and 

temperatures  from 25 t o  60°C have shown t h a t  K a dec reases  as t h e  

0.40 2 0.05 power of t h e  p r e s s u r e  (19) .  

t h e  p r e s s u r e  and f low parameters  a r e  such t h a t ,  i f  t h e  l i n e a r  gas  

f low a t  p re s su re  and t h e  l i q u i d  t o  hydrogen molar f low r a t i o ,  L/G,  

are maintained cons tan t  f o r  d i f f e r e n t  p re s su res ,  then  t h e  a c t i v i t y  

dec reases  only s l i g h t l y  wi th  p re s su re .  Operat ing a t  a cons t an t  

l i n e a r  flow a t  p re s su re  i s  equ iva len t  t o  keeping t h e  gas  con tac t  

t i m e  wi th  t h e  c a t a l y s t  cons t an t .  Thus,to minimize t h e  dec rease  

of  a c t i v i t y  with p re s su re ,  i t  i s  necessary  t o  main ta in  a n e a r l y  

cons tan t  l i n e a r  f low a t  p re s su re .  

Y 
The power dependence of  

The power dependences of t h e  a c t i v i t y  on p r e s s u r e  and gas  

and l i q u i d  flow rates j u s t  given are only a p p l i c a b l e  t o  mixed 

c a t a l y s t  beds f o r  which K a is  about u n i t y  a t  25"C, 0 . 1  MPa and a 

hydrogen f low rate of  1 .0  m ' s  a t  STP. For these  c a t a l y s t s  t h e  

c a t a l y t i c  r a t e  ( r e a c t i o n  2) and vapour- l iquid t r a n s f e r  rate ( r e a c t i o n  

3 )  a r e  approximately equa l .  When t h e  r e l a t i v e  magnitudes of t h e s e  

ind iv idua l  r a t e s  d i f f e r ,  t h e  power dependences w i l l  vary somewhat 

from t h e  va lues  repor ted  h e r e .  

-1 

Plat inum Metal Area 

The e f f e c t  of p la t inum metal  s u r f a c e  a r e a  on the  a c t i v i t y  

of t h e  c a t a l y s t  i s  shown i n  F ig .  6 ,  where K a i s  p l o t t e d  a g a i n s t  

t h e  plat inum m e t a l  su r f ace  a r e a ,  measured by hydrogen chemisorpt ion,  

and expressed as m 
wi th  metal  a r e a ,  t h e  inc rease  i s  n o t  d i r e c t l y  p ropor t iona l  t o  t h e  

a r e a .  For meta l  a r e a s  below 0.06 m * c m  , K a inc reases  a s  t he  
Y 

0.75 power of  t h e  m e t a l  s u r f a c e  area and a t  h igher  metal areas t h e  

ra te  of i n c r e a s e  i s  less. The curve appears  t o  be approaching 

a maximum va lue .  These r e s u l t s  i n d i c a t e  t h a t  t h e  vapour- l iquid 

t r a n s f e r  r a t e ,  which i s  unaf fec ted  by i n c r e a s i n g  t h e  p la t inum metal 

area, is  s e r i o u s l y  l i m i t i n g  t h e  o v e r a l l  exchange r e a c t i o n  a t  t h e  

h ighe r  metal loadings .  

Y 

2 p e r  cm3 of  packed bed. Although K a i n c r e a s e s  
Y 

2 -3 
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HYDROGEN ISOTOPE SEPARATION 38 7 

C a t a l y s t  S t a b i l i t y  

For t h e  c a t a l y s t  t o  be used commercially, i t  must be s t a b l e  

and have a long  l i f e t i m e .  C a t a l y s t  performance i n  columns h a s  been 

s t u d i e d  f o r  e x t e n s i v e  p e r i o d s ,  and one s i n g l e  charge  of  c a t a l y s t  has  

been t e s t e d  f o r  550 days.  F i g u r e  7 shows t h e  r e s u l t s  of  such a 

l i f e t i m e  s t u d y  f o r  two hydrogen f low rates, a h i g h  f low of  1 .0  

rn-s and a low f low of 0.20 m a s  . A f t e r  t h e  i n i t i a l  run- in  

p e r i o d  t h e  c a t a l y s t  w a s  s t a b l e  and f o r  some extended p e r i o d s  of  

t i m e ,  up t o  70 days ,  no measurable  change i n  a c t i v i t y  w a s  observed .  

Over 170  days of cont inuous  o p e r a t i o n  t h e  a c t i v i t y  decreased  by 

Only 13%,  which is e q u i v a l e n t  t o  a c a t a l y s t  h a l f - l i f e  longer  

t h a n  two y e a r s .  

-1 -1 

A l l  our  d a t a  on c a t a l y s t  l i f e t i m e  now sugges t  t h a t  t h e r e  i s  

no i n t r i n s i c  decay of c a t a l y s t  a c t i v i t y  due t o  water logging  o r  some 

o t h e r  problem b a s i c  t o  t h e  c a t a l y s t .  A l l  changes i n  a c t i v i t y  seem 

LIFETIME OF A Pt - C  -TEFLON CATALYST 

ERATURE - 298.2 K 

SURE - I I O k P a  

------- _ _ _ - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - 
v- - -  

TEMPERATURE 
EXCURSIONS 

T I M E  - D A Y S  

FIGURE 7 .  L i f e t i m e  of a 0.2% Pt-C-Teflon c a t a l y s t  a t  h i g h  and 
low l i q u i d  and g a s  f low ra tes ,  

-1 -2. -I 0 H2 f low 1 . 0  m a s  (STP), H20 flow 0.80 k g - m  s 

-2. -1 
@ H2 f l o w  0.20 m-s-'(STP), H 2 0  f low 0 .13  kg.m s . 
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388 BUTLER 

t o  r e s u l t  from o p e r a t i o n a l  u p s e t s  o r  contaminants  i n  the f e e d  

s u p p l i e s .  

The c a t a l y s t  can  be  r a p i d l y  poisoned by contaminants  which are 

s t r o n g l y  adsorbed on p l a t i n u m ,  such as  carbon monoxide. However, i t  

can be e a s i l y  r e g e n e r a t e d ,  i n  s i t u ,  by h e a t i n g  i n  a i r .  We have never  

encountered a c a t a l y s t  t h a t  could  n o t  b e  r e g e n e r a t e d  t o  a t  least  

85% of i t s  o r i g i n a l  a c t i v i t y .  Extens ive  s t u d i e s  i n d i c a t e  t h a t ,  

w i t h  p e r i o d i c  r e g e n e r a t i o n ,  t h e  c a t a l y s t  should  remain a c t i v e  f o r  

many y e a r s  i f  t h e  p u r i t y  of t h e  hydrogen and water f e e d s  are c a r e f u l l y  

c o n t r o l l e d .  

The Combined E l e c t r o l y s i s  C a t a l y t i c  Exchange (CECE) P r o c e s s  

The o r i g i n a l  purpose  of t h i s  r e s e a r c h  w a s  t o  develop a n  

a l t e r n a t i v e  t o  t h e  GS p r o c e s s  f o r  t h e  p r o d u c t i o n  of  heavy w a t e r .  

Although a c t i v e  and s t a b l e  c a t a l y s t s  have been p r e p a r e d ,  o u r  

s t a n d a r d  c a t a l y s t s  a r e  n o t  y e t  s u f f i c i e n t l y  a c t i v e  t o  make a 

b i t h e r m a l  hydrogen-water exchange p l a n t  economica l ly  c o m p e t i t i v e  

w i t h  t h e  GS p r o c e s s .  The volume o f  the exchange columns and t h e  

c o s t  of  t h e  c a t a l y s t  are, as y e t ,  t o o  g r e a t .  A d d i t i o n a l l y ,  l i t t l e  

work h a s  been done on t h e  development of a c a t a l y s t  s u i t a b l e  f o r  

h o t  tower o p e r a t i o n .  However, v e r y  e f f i c i e n t  hydrogen i s o t o p e  

s e p a r a t i o n  can  b e  accomplished by c o u p l i n g  a c a t a l y s t  exchange 

column t o  t h e  hydrogen stream from an e l e c t r o l y s i s  c e l l .  T h i s  

Combined E l e c t r o l y s i s  C a t a l y t i c  Exchange (CECE) p r o c e s s  i s  reviewed 

i n  d e t a i l  by Hamnerli and coworkers  i n  s e v e r a l  p a p e r s  ( 2 0 ,  2 1 ,  22), 

and i t  w i l l  b e  d i s c u s s e d  b r i e f l y  l a t e r .  Because t h e  s e p a r a t i o n  

f a c t o r ,  a ,  f o r  t h e  hydrogen-water exchange i s  h i g h e r  t h a n  t h a t  f o r  

t h e  GS system, a much h i g h e r  r e c o v e r y  of deuter ium from n a t u r a l  

water i s  p o s s i b l e ,  70% f o r  t h e  CECE p r o c e s s  compared t o  19% f o r  

GS. The h i g h e r  r e c o v e r y  means t h a t  lower water and g a s  f lows  are  

r e q u i r e d  i n  t h e  p l a n t  and ,  w i t h  t h e  v e r y  a c t i v e  r a t a l y s t s  t h a t  have 

been developed,  t h e  exchange columns w i l l  be  q u i t e  s m a l l .  Although 

most of  t h e  s e p a r a t i v e  work i s  accomplished i n  t h e  exchange columns, 

t h e i r  volume would o n l y  b e  about  10% of t h e  exchange volume i n  c u r r e n t  

GS p l a n t s ,  f o r  t h e  same p r o d u c t i o n  o f  heavy water. 
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HYDROGEN ISOTOPE SEPARATION 389 

Before  d i s c u s s i n g  a p p l i c a t i o n s  of t h e  CECE p r o c e s s ,  i t  i s  

wor th  mentioning t h a t  t h e  p r o d u c t i o n  o f  heavy water by t h i s  p r o c e s s  

a l s o  i n v o l v e s  t h e  p r o d u c t i o n  of l a r g e  q u a n t i t i e s  of hydrogen and 

oxygen. 

v a l u e .  I f  hydrogen becomes a s i g n i f i c a n t  s o u r c e  of  p o r t a b l e  energy ,  

as  i s  b e i n g  sugges ted ,  t h e n  t h e  CECE p r o c e s s  should become a major 

s o u r c e  of heavy water i n  t h e  f u t u r e .  

Both hydrogen and heavy water  have c o n s i d e r a b l e  commercial 

A p p l i c a t i o n s  of  t h e  CECE P r o c e s s  

Although l a r g e  s c a l e  p r o d u c t i o n  of  heavy water by t h e  CECE 

p r o c e s s  is n o t  y e t  s e r i o u s l y  be ing  c o n s i d e r e d ,  a number o f  s m a l l  

s c a l e  a p p l i c a t i o n s  i m p o r t a n t  t o  t h e  n u c l e a r  i n d u s t r y  are c u r r e n t l y  

f e a s i b l e ,  and t h e s e  are summarized below. 

Deuterium Enrichment 

1. 

2 .  

3 ,  

4 .  

Upgrading of  D2G. 
become downgraded w i t h  l i g h t  water t o  as l o w  as 1% c a n  b e  

re -enr iched  t o  r e a c t o r  grade ,  99.8% D20 ,  by t h e  CECE p r o c e s s .  

On-line moderator  upgrading.  

r e a c t o r s  could  be c o n t i n u a l l y  upgraded by t h e  CECE p r o c e s s  t o  

a h i g h e r  deuter ium c o n c e n t r a t i o n ,  s a y  99.9% D20. 

s i g n i f i c a n t l y  improve n e u t r o n  u t i l i z a t i o n  i n  CANDU power 

r e a c t o r s .  

F i n a l  enr ichment  i n  GS p l a n t s .  The GS p r o c e s s  produces 10 

t o  20% D 2 0  which i s  c u r r e n t l y  e n r i c h e d  t o  r e a c t o r  grade  by 

water d i s t i l l a t i o n .  We estimate t h i s  can be  done more 

economical ly  by t h e  CECE p r o c e s s .  

Small D 2 0  p l a n t .  

f e a s i b l e  where a market e x i s t s  f o r  bo th  t h e  heavy water and t h e  

l a r g e  amounts of  e l e c t r o l y t i c  hydrogen produced. 

Heavy water a t  CANDU power s t a t i o n s  t h a t  h a s  

The moderator  of o p e r a t i n g  

T h i s  would 

A s m a l l  (20 t o  100 Mg/a) D 2 0  p l a n t  would b e  

T r i t i u m  Recovery 

1. T r i t i u m  e x t r a c t i o n  from D 0 T r i t i u m  b u i l d s  up i n  the heavy 

water i n  CANDU r e a c t o r s .  The recovery  o f  t h i s  t r i t i u m  would 

reduce  t h e  r a d i a t i o n  h a z a r d s  f o r  r e a c t o r  o p e r a t o r s  (23) and may 

become envi ronmenta l ly  d e s i r a b l e  i n  t h e  f u t u r e .  

2--' 
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390 BUTLER 

2 .  T r i t i u m  recovery  from l i g h t  w a t e r .  T r i t i u m  can b e  recovered  

from l i g h t  water wastes from r e a c t o r s  and from p l a n t s  o p e r a t e d  

by Department of Energy c o n t r a c t o r s  i n  t h e  U . S . A .  P i l o t  p l a n t  

s t u d i e s  of t h e  CECE p r o c e s s  f o r  t r i t i u m  r e c o v e r y  have been i n  

p r o g r e s s  a t  Mound F a c i l i t y  ( 2 4 )  f o r  several y e a r s .  T r i t i u m  

recovery  w i l l  a l s o  be r e q u i r e d  i n  n u c l e a r  f u e l  r e p r o c e s s i n g  

p l a n t s  s i n c e  t r i t i u m  i s  a product  o f  t h e  f i s s i o n  p r o c e s s .  

A s i m p l i f i e d  f low diagram of t h e  CECE p r o c e s s  f o r  t r i t i u m  

recovery  from l i g h t  water waste i s  shown i n  F ig .  8. Waste w a t e r  

c o n t a i n i n g  t r i t i u m  from a f u e l  r e p r o c e s s i n g  p l a n t  e n t e r s  t h e  mid- 

s e c t i o n  of a hydrogen water exchange column. 

c o n t a i n i n g  t r i t i u m  p a s s e s  upward through t h e  column and s t e a d i l y  

l o s e s  t r i t i u m  t o  t h e  water f lowing  c o u n t e r c u r r e n t l y  downward. The 

water  becomes e n r i c h e d  i n  t r i t i u m  as i t  p a s s e s  down the c a t a l y s t  

E l e c t r o l y t i c  hydrogen 

CECE-TRITIUM RECOVERY PROCESS 

H, - 0, RECOMBINER o! 
-------_ 

FUEL I 
REPROCESSING + 

PLANT 

ELECTROLYTIC CELLS 

FIGURE 8. A s i m p l e  schemat ic  f l o w s h e e t  of t h e  CECE p r o c e s s  f o r  t h e  
recovery  of t r i t i u m  from waste aqueous streams from a 
n u c l e a r  f u e l  r e p r o c e s s i n g  p l a n t .  
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HYDROGEN ISOTOPE SEPARATION 39 1 

bed t o  the e l e c t r o l y s i s  c e l l .  

o f  t h e  exchange column i s  recombined w i t h  t h e  oxygen and p a r t  of 

t h e  r e s u l t i n g  d e t r i t i a t e d  water i s  r e t u r n e d  t o  t h e  r e p r o c e s s i n g  

p l a n t  w h i l e  t h e  remainder  e n t e r s  t h e - t o p  of  t h e  column as a r e f l u x  

stream. F i n a l  s e p a r a t i o n  o f  the t r i t i u m ,  as i l l u s t r a t e d  i n  F i g .  8 ,  

i s  accomplished by cryogenic  d i s t i l l a t i o n  of hydrogen, which i s  

t h e  o n l y  p r a c t i c a l  method o f  c o n c e n t r a t i n g  t r i t i u m  t o  99% T2. 

E s s e n t i a l l y  t h e  same system c a n  a l s o  be  used f o r  t h e  d e t r i t i a t i o n  

o f  heavy water.  

The s t r i p p e d  hydrogen from t h e  t o p  

Mound F a c i l i t y  ( 2 4 )  p e r s o n n e l  are  t e s t i n g  t h e  CECE p r o c e s s  

f o r  t r i t i u m  removal from l i g h t  water,  u s i n g  two 7.5 m columns packed 

w i t h  c a t a l y s t  from CRNL. Because of  t h e  v e r y  h i g h  t r i t i u m - p r o t i u m  

s e p a r a t i o n  f a c t o r ,  7 .0 ,  t h e y  have achieved  t r i t i u m  c o n c e n t r a t i o n  

changes i n  t h e  hydrogen of  g r e a t e r  t h a n  2 x lo3  over  7 .5  m of 

column l e n g t h .  The a c t i v i t y  of t h e  c a t a l y s t  under  t h e i r  o p e r a t i n g  

c o n d i t i o n s  i s  i n  good agreement w i t h  measurements made i n  o u r  

l a b o r a t o r y .  The system h a s  been  o p e r a t e d  i n t e r m i t t e n t l y  f o r  over 

20 months w i t h  no a p p r e c i a b l e  d e t e r i o r a t i o n  i n  c a t a l y s t  performance 

(25) - 
With s l i g h t  m o d i f i c a t i o n s ,  t h e  system g i v e n  i n  F i g .  8 can be  

used f o r  upgrading  heavy water, and i n  t h i s  a p p l i c a t i o n  t h e  c ryogenic  

system i s  not  r e q u i r e d .  The product  stream i s  taken  from t h e  

e n r i c h e d  w a t e r  f rom t h e  bot tom of  the c a t a l y s t  column, and p a r t  of  

t h e  w a t e r  from t h e  recombiner, which h a s  a low deuter ium c o n c e n t r a t i o n .  

i s  d i s c a r d e d  as was te .  

An e n g i n e e r i n g  test  f a c i l i t y  u s i n g  t h e  CECE p r o c e s s  f o r  upgrading  

of heavy water i s  c u r r e n t l y  b e i n g  o p e r a t e d  a t  CRNL ( 2 6 ) .  

problems have been encountered  w i t h  Contaminants ,  b u t  t h e s e  have 

been i d e n t i f i e d  and a l t e r a t i o n s  t o  t h e  t e s t  f a c i l i t y  are underway 

t o  e l i m i n a t e  t h e  problem. 

Some 

Liquid  Phase C a t a l y t i c  Exchange (LPCE) 

An a l t e r n a t i v e  method f o r  t r i t i u m  e x t r a c t i o n  from heavy water, 

u s i n g  t h e  hydrophobic c a t a l y s t ,  i s  t h e  Liquid  Phase C a t a l y t i c  

Exchange (LPCE) p r o c e s s ,  f i r s t  sugges ted  by Dombra (27) a t  CRNL. 
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392 BUTLER 

T h i s  p r o c e s s  u s e s  a c a t a l y t i c  exchange column w i t h o u t  a n  e l e c t r o -  

l y s i s  c e l l  and i s  shown s c h e m a t i c a l l y  i n  F i g .  9.  Heavy water from 

a r e a c t o r ,  c o n t a i n i n g  pro t ium and t r i t i u m ,  p a s s e s  down a c a t a l y s t  

column and deuter ium g a s ,  d e p l e t e d  i n  t r i t i u m  and p r o t i u m ,  f lows 

c o u n t e r c u r r e n t l y  upward. Pro t ium and t r i t i u m  are t r a n s f e r r e d  

t o  t h e  g a s  stream which t h e n  goes t o  t h e  c r y o g e n i c  d i s t i l l a t i o n  

system f o r  s e p a r a t i o n  and enr ichment ,  w h i l e  t h e  s t r i p p e d  deuter ium 

gas  is  r e t u r n e d  t o  t h e  c a t a l y s t  column. The e f f l u e n t  water from 

t h e  column, s t r i p p e d  of  t r i t i u m  and prot ium, i s  r e t u r n e d  t o  t h e  

reactor. 

T h i s  system i s  a t t r a c t i v e  because  of  i t s  s i m p l i c i t y .  The 

e l e c t r o l y s i s  c e l l  and t h e  H2-02 recombiner  of t h e  CECE p r o c e s s  are  

n o t  r e q u i r e d .  It  h a s  t h e  added advantage  t h a t  t r i t i u m  a t  h i g h  

c o n c e n t r a t i o n s  i s  o n l y  handled i n  t h e  e l e m e n t a l  form, which i s  much 

less hazardous t o  h e a l t h  than  t r i t i u m  as oxide .  I n  t h e  CECE 

p r o c e s s ,  t r i t i u m  i s  c o n c e n t r a t e d  i n  t h e  l i q u i d  phase  by a l a r g e  

LPCE-TRITIUM TRANSFER PROCESS 

O@@ 
r----------9 

REACTOR 
HEAVY 
WATER 
SYSTEM 

H 
CATALYST 
COLUMN 

* 
I 
I 

HEAVY WATER DEUTERIUM GAS 
RETURN 

FIGURE 9. A s imple  schemat ic  f l o w s h e e t  of  t h e  LPCE p r o c e s s  f o r  
t h e  r e c o v e r y  of t r i t i u m  from heavy water. 
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HYDROGEN ISOTOPE SEPARATION 39 3 

f a c t o r ,  about  100,  t h u s  p o s i n g a h i g h e r  h e a l t h  hazard.  A 

d i sadvantage  of t h e  LPCE system, of course ,  i s  t h a t  t r i t i u m  i s  

n o t  concent ra ted  i n  t h e  c a t a l y s t  column; t h u s  t h e  c a p a c i t y  of t h e  

c ryogenic  d i s t i l l a t i o n  u n i t  must be about  100 t i m e s  g r e a t e r  t h a n  

i n  t h e  CECE p r o c e s s .  

The c a t a l y s t  s e c t i o n  o f  t h e  LPCE p r o c e s s  i s  be ing  t e s t e d  i n  

an  engineer ing  f a c i l i t y  at  CRNL u s i n g  a column 1 .8  m i n  l e n g t h  ( 2 6 ) .  

The system was opera ted  s u c c e s s f u l l y  f o r  f i v e  months w i t h  l i g h t  

water, s e p a r a t i n g  deuter ium from prot ium. Over t h i s  p e r i o d  of  

cont inuous  o p e r a t i o n  t h e  c a t a l y s t  a c t i v i t y  w a s  e s s e n t i a l l y  c o n s t a n t ,  

w i t h i n  15% of  t h a t  p r e d i c t e d  from l a b o r a t o r y  s t u d i e s .  M o d i f i c a t i o n s  

are i n  p r o g r e s s  t o  s t u d y  t h e  performance of t h e  system f o r  t h e  

s e p a r a t i o n  of t r i t i u m  from heavy w a t e r .  

The LPCE p r o c e s s  h a s  been chosen f o r  CRNL' s  proposed 

demonst ra t ion  p l a n t  f o r  t r i t i u m  recovery  from heavy water.  The 

s i m p l i c i t y  of t h e  p r o c e s s  and t h e  lower c o n c e n t r a t i o n s  of  t r i t i u m  

oxide  were t h e  major f a c t o r s  i n f l u e n c i n g  t h e  choice  over  t h e  CECE 

process .  

t y p e  r e a c t o r s  owned by Atomic Energy of  Canada Ltd. Under s teady-  

s t a t e  o p e r a t i n g  c o n d i t i o n  w i t h  a feed  f low of 1 5 . 7  kg D20  p e r  hour 

c o n t a i n i n g  3.5 C i  of t r i t i u m l k g ,  t h e  p l a n t  w i l l  r ecover  0.4 M C i  

( o r  40 g) of t r i t i u m  per  y e a r  as  99% T2. A f t e r  p r o c e s s i n g ,  t h e  

c o n c e n t r a t i o n  of  t r i t i u m  i n  t h e  heavy water w i l l  be  reduced t o  0.35 

Cifkg .  Our p r e s e n t  schedule  c a l l s  f o r  t h e  demonst ra t ion  p l a n t  t o  be 

on stream by t h e  end of  1982. 

The p l a n t  w i l l  p r o c e s s  heavy w a t e r  from r e s e a r c h  and pro to-  

SUMMARY 

Hydrogen i s o t o p e  s e p a r a t i o n  i s  impor tan t  f o r  t h e  c o n t i n u i n g  

s u c c e s s  of  t h e  n u c l e a r  i n d u s t r y .  

r e q u i r e d  f o r  power r e a c t o r s  moderated w i t h  heavy w a t e r  such  as t h e  

CANDU r e a c t o r s .  The recovery  of t r i t i u m  from r e a c t o r s  and n u c l e a r  

f u e l  r e p r o c e s s i n g  p l a n t s  is  becoming i n c r e a s i n g l y  i m p o r t a n t  t o  

reduce  o c c u p a t i o n a l  exposures  and t o  minimize t h e  release of rad io-  

a c t i v i t y  t o  t h e  environment. 

Large q u a n t i t i e s  of D 2 0  are 
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394 BUTLER 

The development of a c t i v e  and s t a b l e  hydrophobic  c a t a l y s t s  h a s  

made t h e  hydrogen-water  exchange r e a c t i o n  a s imple  and e f f e c t i v e  

method f o r  t h e  s e p a r a t i o n  o f  hydrogen i s o t o p e s .  T h i s  exchange 

r e a c t i o n  i s  used most e f f i c i e n t l y  i n  t h e  Combined E l e c t r o l y s i s  

C a t a l y t i c  Exchange (CECE) p r o c e s s ,  which c o u p l e s  a hydrogen-water 

c a t a l y t i c  exchange column to  t h e  hydrogen s t r e a m  from a n  e l e c t r o l y s i s  

ce l l .  A number of  a p p l i c a t i o n s  o f  t h i s  p r o c e s s  f o r  deuter ium 

enrichment  and t r i t i u m  recovery  are  b e i n g  s t u d i e d  i n  e n g i n e e r i n g  

t es t  f a c i l i t i e s .  

The Liquid  Phase C a t a l y t i c  Exchange (LPCE) p r o c e s s  o f f e r s  a n  

a l t e r n a t i v e  method f o r  t h e  d e t r i t i a t i o n  of  heavy water. The 

c a t a l y s t  column t r a n s f e r s  t r i t i u m  from t h e  l i q u i d  phase t o  

deuter ium g a s  which i s  t h e n  passed  t o  a hydrogen cryogenic  

d i s t i l l a t i o n  u n i t .  The s i m p l i c i t y  of t h i s  sys tem o f f e r s  some 

advantages  f o r  t h e  s e p a r a t i o n  o f  t r i t i u m  from D 2 0 .  

These a p p l i c a t i o n s  u s i n g  hydrogen-water i s o t o p i c  exchange are  

of  immediate i n t e r e s t  t o  t h e  n u c l e a r  i n d u s t r y .  However, i f  t h e  

p r e d i c t e d  demand f o r  hydrogen as t h e  energy s o u r c e  of t h e  f u t u r e  

m a t e r i a l i z e s ,  t h e n  t h e  CECE p r o c e s s ,  which produces b o t h  heavy 

water and hydrogen,should p l a y  a s i g n i f i c a n t  r o l e  i n  t h e  economy. 

It i s  conce ivable  t h a t  a l a r g e  amount of heavy w a t e r  may be  

produced by t h e  CECE p r o c e s s  i n  t h e  f u t u r e .  
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